您好,欢迎进入深圳长欣自动化设备有限公司!

咨询热线:

+86 17735379951

国产芯上运行TINYMAXI轻量级的神经网络推理库-米尔基于芯驰D9国产商显板

发布时间:2024-07-10 10:13人气:

本篇测评由与非网的优秀测评者“短笛君”提供。本文将介绍基于米尔电子MYD-YD9360商显板(米尔基于芯驰D9360国产开发板)的TinyMaxi轻量级的神经网络推理库方案测试。

算力测试

TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意单片机上运行轻量级深度学习模型~ 开源地址:

https://github.com/sipeed/TinyMaix

搭建的环境为编译的Ubuntu18.04 已经预装好cmake make工具由于魔法网络原因,这里提前下载好tar包到宿主机上,然后传输到板卡中解压

•    查看cmake版本

cmake -version

•    查看make版本

make -version

确认文件路径,尽量不要拷贝到有权限的路径下

自带示例

文件结构

MNIST示例

MNIST是手写数字识别任务

cd到examples/mnist目录下 使用mkdir build && cd build 命令切换到build文件夹下

cmake ..make./ mnist

cmake生成构建系统

使用make构建可执行文件然后运行

可以看到输出信息

MNIST 示例默认未使用任何指令加速,运行了一张 28×28 的手写数字模拟图像,共消耗了 0.114 毫秒

MBNET示例

mbnet 是适用于移动设备的简单图像分类模型。

•    切换到 /examples/mbnet 目录:

•    修改 main.c 文件

•    创建 build 文件夹并切换

•    使用 cmake 命令生成构建系统

•    使用 make 命令构建系统,生成可执行文件

•    运行可执行文件,执行效果如下

•    MBNET 示例运行输入了一张 96×96×3 的 RGB 图像,输出 1000 分类,共消耗了 16.615 毫秒

运行cifar10 demo

米尔电子MYD-YD9360商显板


+86 17735379951